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A Remark on the Equivalence of Isokinetic and
Isoenergetic Thermostats in the Thermodynamic Limit
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The Gaussian isokinetic and isoenergetic thermostats of Hoover and Evans
are formally equivalent, as remarked by Gallavotti, Rondoni, and Cohen. But
outside of equilibrium the fluctuations are uncontrolled and might break the
equivalence. We show that equivalence is ensured if we consider an infinite
system assumed to be ergodic under space translations.
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1. INTRODUCTION

In the study of nonequilibrium statistical mechanics, if nonhamiltonian
forces are used to achieve nonequilibrium, a thermostat is needed to cool the
system. The Gaussian thermostats introduced by W. Hoover and D. Evans
have the great interest of respecting the deterministic character of the equa-
tions of motion (see for instance Evans and Morriss(3)). Starting with an
evolution equation x* =F(x) in phase space, a Gaussian thermostat con-
strains the evolution to a prescribed hypersurface 7 by projecting F(x), for
x # 7, to the tangent plane to 7 at x. In the present note we follow Cohen�
Rondoni, and Gallavotti comparing an isokinetic and an isoenergetic
thermostat, and showing that they give the same result in the limit of a
large system (thermodynamic limit).

In equilibrium statistical mechanics one can show rigorously that fixing
the kinetic energy is equivalent to fixing the total energy, asymptotically for
large systems (see ref. 6). It is therefore natural to hope that something
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similar is true for nonequilibrium, as advocated by Gallavotti (many refer-
ences, see refs. 4 and 5) and by Cohen and Rondoni.(2) However, the
entropy considerations which are available in equilibrium statistical
mechanics fail utterly outside of equilibrium, i.e., fluctuations of energy at
fixed kinetic energy are uncontrolled, and the situation appears rather
hopeless. We shall show however that the argument of Cohen and Rondoni
can be modified to apply, at least formally, to the dynamics of actually
infinite systems. (In a different context��at equilibrium��Sinai(7) has also
shown the interest of considering the dynamics of infinite systems). Our
approach will remain formal at the level of infinite system evolution equa-
tions: technical problems arise there, which do not seem directly related to
the problem at hand, and are better discussed separately.

We shall consider a system of particles in d dimensions which is
infinitely extended in & dimensions, with 1�&�d, and we shall discuss
states of infinitely many particles which are invariant under translations
in R&. The assumption that the infinite systems dynamics is well defined,
and R&-ergodicity, will be sufficient to establish the equivalence of iso-
kinetic and isoenergetic nonequilibrium steady states

2. IK AND IE DYNAMICS

We recall now the definition of the Gaussian isokinetic (IK) thermo-
stat. We take for our configuration space M a compact subset of Ru_Tv

where Tv is the v-torus, and momentum space is identified with Ru+v. We
assume that a force field on M is given, written as &grad V+!, where
V : M � R is a potential, and ! is a nongradient vector field.2 Consider now
the equations of motion

p* =&�q V+!&:p
(1)

q* = p�m

completed by elastic reflection at the boundary of M. Without the term
!&:p this time evolution would be Hamiltonian. The term ! maintains the
system outside of equilibrium. The term &:p is the thermostat. We obtain
the Gausssian isokinetic thermostat by choosing : such that the kinetic
energy is constant:

0=
d
dt

p2

2m
=

p
m

} (&�q V+!&:p)
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2 Note that a change in V can be compensated by a corresponding change in !: the splitting
of the force into two terms is arbitrary for the IK time evolution.



i.e.,

:=(&�q V+!) } p�p2 (2)

Note that if ! is locally a gradient (corresponding to a multivalued poten-
tial function on M ), the Dettmann-Morriss pairing theorem asserts that
(except for one value=0) the spectrum of Lyapunov exponents of an
ergodic measure is symmetric with respect to some constant c which is in
general nonzero. (We shall however not make use of this result).

We consider now the Gaussian isoenergetic (IE) thermostat associated
again with the force &grad V+!, but where we want to maintain fixed the
energy function

H= p2�2m+V(q) (3)

The equations of motion are again of the form (1) and using (3) the
isoenergetic condition is

0=H4 =
p
m

} (&�qV+!&:p)+�q V }
p
m

i.e.,

:=! } p�p2 (4)

With the Gaussian isoenergetic (IE) thermostat the time evolution is thus
defined by (1), (4).

We consider now the IK and the IE time evolution in the infinite
system limit. We want to study the time evolution of a state \ ergodic
under R&-space translations. We shall ignore existence and uniqueness
problems for these evolution equations, and our discussion will thus
remain formal in this respect. (In fact, the one-dimensional situation may
be relatively accessible to rigorous study, but the n-dimensional case with
n�2 appears much more difficult).

Physically we may think of a system of particles in a region D invariant
under R&, where 1�&�dim D but possibly &<dim D. For example we
may consider a shear flow between two moving plates, but we do not take
the limit where these two plates are infinitely far apart, as this would intro-
duce unwanted hydrodynamic instabilities. Another example would be a
system of particles in [0, L]_R&. In the x-direction we put an electric field
and we assume a suitable boundary condition (see ref. 1).

The expressions p2= p } p and ! } p diverge for an infinite system, but
behave additively with respect to volume, and we can (under mild conditions
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on \) define the average per unit volume with respect to \, noted ( p2) \

or (! } p) \ . Since \ is ergodic, it is carried by points (in infinite phase
space) for which the large volume average of p2 or ! } p is well defined and
constant, equal to ( p2) \ or (! } p) \ . The expressions V, �q V } p behave
almost additively with respect to volume and, again under mild conditions,
we can define the large volume averages (V ) \ , (�qV } p) \ . Again, \ is
carried by points (in infinite phase space) for which the large volume
average of V or �q V } p is well defined and constant, equal to (V ) \ or
(�qV } p) \ .

In our formal treatment of the infinite system IK or IE evolution we
consider the time evolution of an infinite phase space point, generic with
respect to the space ergodic measure \, replacing the expressions (2), (4)
for : by their large volume limits

:=( (&�qV+!) } p) \ �( p2) \ (2$)

or

:=(! } p) \ �( p2) \ (4$)

In general \ depends on time, and so does : given by (2$) or (4$). Suppose
now that \ is invariant under the IK or IE time evolution; then : and also
V are time independent, so that

0=(V4 ) \=(�q V } q* ) \=
1
m

(�q V } p) \

But then (2$) and (4$) coincide: the infinite system IK and IE evolutions
have the same time invariant space ergodic states \. (Apart from the use of
space ergodicity for an actually infinite system, this is the remark of Cohen
and Rondoni(2)).

Note that, if we replace in (3) m by m~ and V by V� , imposing H4 =0
yields

:=\m~
m

�q V� &�qV+!+ }
p
p2

and in the infinite system limit we have again equivalence with the iso-
kinetic ensemble. On the other hand, if H is not of the form p2�2m~ +V� (q),
the Gaussian thermostat doesn't give a term of the form &:p in (1) and
we do not have equivalence with the isokinetic ensemble in the infinite
system limit.
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For the purposes of nonequilibrium statistical mechanics one should
presumably restrict \ to be an infinite system SRB state (defined so that the
time entropy per unit volume is equal to the sum of the positive Lyapunov
exponents per unit volume). Hopefully, the space ergodic SRB states form
a 2-parameter family parametrized by the average number of particles and
the energy (or the kinetic energy) per unit volume. But the delicate ques-
tion of identifying the natural nonequilibrium steady states is here bypassed
by the remark that they are the same for the infinite system IK and IE
evolutions.

In equilibrium statistical mechanics the proof of equivalence of ensembles
is somewhat subtle, and uses in particular the concavity properties of the
entropy (see ref. 6). One might think that the corresponding problem in
nonequilibrium statistical mechanics would be even more difficult, and the
above findings about the equivalence of IK and IE appear thus surprisingly
cheap. What we have shown is however only that the IK and IE evolutions
coincide (formally) in the infinite system limit; the detailed study of the
natural nonequilibrium states remains to be made.

3. THE CONSTANT : CASE

It is of interest to consider the equations (1) with :=constant. For
this situation one obtains the following result.

Proposition. Consider the evolution equations

p* =&�q V+!&:p

q* = p�m

in TM, where M/Ru_Tv and we impose elastic reflection on the boundary
of M. We assume that :, m are constants >0, and that V, ! are bounded.
Then

lim sup
t � � \ p2

2m
+V +�

max !2

2m:2 +max V (5)

lim sup
t � �

p2�
max !2

:2 +2m(max V&min V ) (6)

Furthermore, if the bounded measure \ is invariant under time evolution
and, 8 is any continuous function we have

| \(dp dq) 8 \ p2

2m + } (! } p&:p2)=0 (7)
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From the evolution equations we obtain

d
dt \

p2

2m
+V+=

p
m

} p* +�q } q* =
p
m

} (&�qV+!&:p)+�q }
p
m

=
p
m

} (!&:p)

(8)

Let now =>0 and suppose that

p2

2m
+V �

max !2

2m:2 +max V+= (9)

then

p2�max !2�:2+=

or

: | p|�max |!|+=$

with =$>0 and thus, in view of (8),

d
dt \

p2

2m
+V+�

1
m

( | p| |!|&: | p| 2)�&
| p|
m

=$

Therefore, as long as (9) holds, we have

d
dt \

p2

2m
+V+�&$

for some $>0, proving (5). From (5) we obtain immediately (6).
Let 9$=8 then, by the ergodic theorem,

| \(dp dq) 8 \ p2

2m+ } (! } p&:p2)= lim
T � �

1
T |

T

0
dt 8 \ p2

2m+ } (! } p&:p2)

= lim
T � �

m
T |

T

0
dt 9$ \ p2

2m+ }
d
dt \

p2

2m
+V+

= lim
T � �

m
T |

T

0
dt

d
dt

9 \ p2

2m
+V+

= lim
T � �

m
T _9 \ p2

2m
+V+&

�

0

=0

because 9 is bounded in view of (5). This proves (7). K
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